Mining goes Digital –

What have we learned and what are the trends?

srk consulting

What is Digital Mining? Is it all about radical, new technology...

#1.8358665

Mines of the Future TM (Rio Tinto)

Machine Learning

Digital Twins

... or about making better decisions faster (or automatically)

Analytics Maturity

Image Source: <u>Delaware Consulting Firm</u>

Key trends: Significant progress with faster communication & data collection

- Most Open Pits now have Fleet Management Systems; many underground mines as well
- Some Open Pits installing private 4G LTE cell systems;
 - Telstra installing a similar system underground at Cannington mine
- Some sites evaluating satellite broadband (Starlink; Project Kuiper)
- Some sites are beginning to move towards data warehouses/consolidation of data

4

= srk consulting

Key trends: making data visible

• In order to make a better decision, you need to identify what exactly is happening

Image courtesy of Blast Movement Technologies

Key trends: Sensors are becoming smarter and providing more insight

- For example, Caterpillar's Driver Safety System (DSS)
 - Installed on over 5000 trucks.
 - Identifies fatigue events: 600,000 fatigue events in 8 million hours. 1641 miles travelled whilst asleep
 - Also identifies distraction events highlights junctions where visibility needs to be improved

Key trends: remote control of underground mining equipment firmly established

- Currently most operators still site based but could be off-site
- Each operator can operate several machines
- Key challenge is managing interaction with other underground users without upsetting the production cycle

Key trends: Automation is gaining traction outside high wage economies

- Over 400 automated trucks in Western Australia
- 30% of iron ore and 6% of gold from (semi) autonomous operations
- Principal benefits:
 - Increased operating time though can be off-set by delays at junctions or in shared working areas
 - Reduces need to recruit and train labour especially if there is high turnover
- Technology likely to accelerate as automobile manufacturers develop driver-less cars

Key trends: Big Data / Predictive Analytics requires some clear thinking

- Still in the development stage
 - Some projects abandoned as the team overwhelmed by volume of data collected and limited time to process and respond
 - Challenge with getting clean data as well as understanding patterns to search for
 - Successful projects ensure technical specialists are involved
 - Successful projects are being phased to learn the problems whilst they are manageable

Key trends: Digital twins – true twins or just simulations?

- Ideally a "Digital Twin" models an actual operation to allow what-if scenarios, trade-offs, test out different operational configurations, or operating strategies to be evaluated.
 - Most models are principally simulation models of greenfield projects but still valuable
- Most recent breakthrough is to use simulation models with short term interval control plans in mine plans

Key trends: Augmented reality – currently a niche opportunity

- Aimed at providing field teams with information from databases
- Not in widespread use

Checking conformance with plan

Image courtesy of Maptek

Equipment maintenance

Image courtesy of Caterpillar

srk consulting

Key trends: Changing the paradigm – redesigning trucks

• Komatsu's cab-less truck avoids need to reverse into loading area but has not converted the removal of the cabin into increased payload

Key trends: Changing the paradigm – ore sorting

- Significant economic potential:
 - Reduce comminution costs
 - 3% of global electricity use
 - Enable more productive, lessselective mining methods to be used
- Two key steps
 - Measure
 - Sort current challenge

Sensor Type	XRF, Laser, Near Infra- Red, Colour	Gamma	X-Ray transmission	PGNAA*	Magnetic Resonance
Measures / Senses	Surface Composition, Colour	Radiation	Atomic Density	Elemental Composition	Mineral Composition
Sorts	Individual particles	Large pods	Individual particles	Large Pods	Pods (1 – 10 tonnes)
No extra prep (wash, etc)	×	\checkmark	\checkmark	\checkmark	\checkmark
Measures all material	×	\checkmark	×	\checkmark	\checkmark
Accurate grade estimate	×	\checkmark	×	\checkmark	\checkmark
Instantaneous (<10s) result	\checkmark	×	\checkmark	×	\checkmark
Single calibration only	×	×	×	×	\checkmark
Example companies	MineSense; NGMK		TOMRA		NextOre
Example sites	Highland Valley Copper, CA Kokpotas, Uzbekistan	Rossing Uranium, Namibia	Many diamond mines	N/A	Ridgeway block cave, AU
Sorting location	Shovel bucket; truck; belt	Truck	Belt		Belt

* Prompt Gamma Neutron Activation Analysis

Gold sulphide ore sorting in Uzbekistan

	Ore tonnage	Gold contained
Below cut-off	34%	20%
Above cut-off	66%	80%

13

Key barriers

- Unreliable communication network
 - Especially underground and especially when buying "cheap"
- Being over-whelmed with data
 - Need data warehousing system and Business Intelligence tools
 - Need to understand what data is needed to make decisions
- Lack of imagination
 - Be ready to redefine KPIs and what information you need to manage the operation
- Poor maintenance reliability
 - Operational optimisation works best with a stable operation; frequent maintenance events create instability
- Lack of consistency in equipment platforms
 - Difficult to collect data if you operate many different equipment types
- Lack of skilled people with site experience
 - Analysts need to know operational processes

Steps that can be taken now to develop capability

- Develop capability & think about what you really need to measure
 - Review what data you collect now and what data you would like to collect
 - Install appropriate, scalable communication network
 - Develop appropriate data warehouses and BI skills
 - Recruit people to analyse data
 - Review KPIs and dashboards; focus on quick wins
- Understand what you already have
 - The VIMS system on Caterpillar trucks collects a lot of data
- Add sensors & collect more detail
- As you build capability, the next steps become clearer and easier to realise

Enjoy the journey!

srk consulting